
Abstract

The forecasting of air pollution is an important and 
popular topic in environmental engineering. Due to 
health impacts caused by unacceptable particulate 
matter (PM) levels, it has become one of the great­
est concerns in metropolitan cities like Karaj City in 
Iran. In this study, the concentration of PM2.5 was 
predicted by applying a multilayer percepteron (MLP) 
neural network, a radial basis function (RBF) neural 
network and a Markov chain model. Two months of 
hourly data including temperature, NO, NO2, NOx, 
CO, SO2 and PM10 were used as inputs to the artifi­
cial neural networks. From 1,488 data, 1,300 of data 
was used to train the models and the rest of the 
data were applied to test the models. The results of 
using artificial neural networks indicated that the 
models performed well in predicting PM2.5 concen­
trations. The application of a Markov chain described 
the probable occurrences of unhealthy hours. The 
MLP neural network with two hidden layers including 
19 neurons in the first layer and 16 neurons in the 
second layer provided the best results. The coeffi­
cient of determination (R2), Index of Agreement (IA) 
and Efficiency (E) between the observed and the 
predicted data using an MLP neural network were 
0.92, 0.93 and 0.981, respectively. In the MLP neu­
ral network, the MBE was 0.0546 which indicates 
the adequacy of the model. In the RBF neural net­
work, increasing the number of neurons to 1,488 
caused the RMSE to decline from 7.88 to 0.00 and 
caused R2 to reach 0.93. In the Markov chain model 
the absolute error was 0.014 which indicated an ac­
ceptable accuracy and precision. We concluded the 
probability of occurrence state duration and transi­
tion of PM2.5 pollution is predictable using a Markov 
chain method.
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diction, Artificial neural network, Markov chain

1. Introduction
Prediction of particulate matter (PM) is one of the 

important issues in the control and management of pol­
lutants in the air. Particulate matter is the term used for 
a mixture of solid particles and liquid droplets found 
in the air (Dong et al., 2012). The health effects of 
exposure to fine particulate matter are increasing the 
risk of death from lung cancer, pulmonary illness (e.g., 
asthma), chronic bronchitis, heart attack and cardio­
vascular disease (Deng et al., 2013; Goss et al., 2004; 
Slaughter et al., 2003).

The US Environmental Protection Agency (EPA) 
standards divide air quality into three categories of 
PM2.5 pollution (0-12 μg/m3 hour concentrations as 
good quality, 12.1 to 55.4 μg/m3 as sensitive quality, 
and 55.5 plus μg/m3 unhealthy quality). By 2020, the 
benefits of reductions in fine particles and ozone are 
estimated to be $113 billion annually (Dong et al., 
2012). Availability of accurate and sufficient data for 
forecasting future emissions helps planning and con­
trol of air pollution in air quality management (AQM); 
therefore, forecasting air pollution for AQM in urban 
areas is essential. Several techniques have been devel­
oped for the prediction of particulate matter (PM) con­
centrations. Approaches for the PM prediction can be 
classified into five categories: (1) empirical models, 
(2) fuzzy logic-based systems, (3) simulation models, 
(4) data driven statistical models, and (5) model-driven 
statistical learning methods (Dong et al., 2012).

Using air pollution modeling software always has 
several limitations. In such models, several errors and 
inaccurate results may be caused because many factors 
are not considered, (Harsham et al., 2008; Hanna et al., 
2007; Caputo et al., 2003). The assessment of time 
series changes and their analysis using mathematical 
methods such as Markov chain model and artificial 
neural network (ANN) methods and using available 
data is appropriate and reliable methods, and usually 
have fewer errors.

Zickus et al. (2002), Owega et al. (2006), Kurt et al. 
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(2008), Kukkonen et al. (2003), Niska et al. (2005), 
Slini et al. (2006), Voukantsis et al. (2011), Feng and 
Moustris (2013) applied ANN models to predict air 
quality parameters. Li et al. (2015) applied ANN meth­
ods to simulate PM2.5 and PM10. Their results indicated 
that ANNs performed better than other methods and 
recommended this method as a reliable and accurate 
model.

The Markov chain model is a useful mathematical 
method in reliability research (Wang and Liu, 2012). 
Several studies have been conducted on the use of Mar­
kov models to predict air pollution in the world; Rom­
anof (1982), Nicas (2000), Shamshad (2005). Chung 
and AitSahlia (2003), Sun et al. (2013) applied a Mar­
kov chain to determine the probability of various pol­
lution scenarios of PM2.5. Their results proved the work­
ability of this method in modelling PM2.5.

The main objective of this study was to predict PM2.5  
concentration and quality of air in Karaj City, Iran 
using past data on air pollution. We applied neural net­
works such as Multilayer Perceptron (MLP) and Radial 
Basis Function (RBF), and Markov Chain model. The 
MLP, RBF and Markov chain are independent models. 
The MLP and RBF belong to a family of artificial 
intelligence neural network, which they aim to predict 
future physical quantities of PM2.5 in the city. The input 
parameters used in this study were temperature and 
hourly air concentrations of NO, NO2, NOx, CO, SO2 
and PM10. Meanwhile, the Markov chain model was 
used to predict the probability of occurrence of PM2.5 
in different periods and to indicate air quality of the 

city in three forms, including good quality, sensitive 
and unhealthy conditions. The models were developed 
and tested for hourly data for two months in the Karaj 
Metro area, and the feasibility was discussed in this 
paper.

1. 1  The Study Area
Karaj City is the capital of Alborz Province, Iran. Its 

population is about 1.97 million, making it the fourth-
largest city in Iran after Tehran, Mashhad and Esfahan. 
It is situated 20 kilometers west of Tehran, at the foot­
hills of the Alborz Mountains. Its coordinates are 50 
degrees, 55 minutes and 15 seconds east longitude and 
35 degrees, 45 minutes and 50 seconds north latitude. 
Its area is about 858 km2. The annual rainfall of the 
area is about 261 mm, and the mean annual tempera­
ture is between 5 and 13 degree centigrade (Ilanloo, 
2011). A monitoring station was considered for this 
work which is located in the main metro station of the 
Karaj to Tehran metro (Fig. 1).

2. Materials and Methods
Availability of accurate and sufficient data to train 

an ANN is very significant. The power of ANNs to 
respond to new problems depends on the primary data 
to some extent. In this study, air quality parameters 
were hourly temperature, SO2, PM10, PM2.5, CO, NO, 
NO2 and NOx. About 1,488 data were available (62 
days), of which 1,300 were applied to train the ANN 

Fig. 1. The location of study area.
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and Markov chain, and the rest of the data were used 
to compare the simulation data with observed data 
which was monitored by the Karaj department of envi­
ronment. Table 1 presents the statistical summary of 
hourly air quality information from March 21, 2015 to 
May 20, 2015.

To allow better predictions, input and output data in 
ANNs were normalized in some iterations. Equation 1 
was used to normalize data in this study. This function 
adjusts data in a range of 0 to 1 (Zurada, 1992).

N 

	
(1)

Where Ni and Xi are scaled and the observed value 
of the parameters; Xmin and Xmax represent the lowest 
and highest amount of a series of the parameters.

2. 1  Artificial Neural Networks (ANNs)
An artificial neural network is an idea to process 

information that is inspired by biological nervous sys­
tems and processes information like the human brain. 
The overall performance of ANN can be observed in 
Equations 2 and 3 (Hambli, 2011; Haykin, 1999).

	 (2)

	 (3)

Where yi
m and vi

m are the input and output of i-th 
neuron in m-th of the hidden layer, f is activation func­
tion. L is the number of connections to previously hid­
den layers and bi

m represent the weight and bias.
Several different types of ANNs are available. We 

used Radial Basis function (RBF) and Multilayer Per­
ceptron (MLP) neural networks in this study. We 
developed all the programs with MATLAB software 

(R2012a) produced by the Math Work Company.

2. 2  MLP Neural Network Structure
MLP neural networks have the ability to determine 

the number of hidden layers, the number of neurons in 

each layer and transfer functions used in the layers. 
These functions can be log sigmoid functions, the one 
most usually applied in ANN (according to Eq. 4) or 
tan. Sigmoid functions (according to Eq. 5).

	
(4)

	
(5)

Where θ is the slope of the transfer function (θ = 0.9).
Several algorithms for training MLP networks exist. 

In the simplest implementation of these networks, 
weight and bias are updated in the direction in which 
efficiency decreases (the opposite direction of the 
slope). Equation 6 illustrates a repeat of this algorithm 

(Rumelhart and McClelland, 1986).

	 (6)

Where xk is weight and bias vector; gk is the slope of 
the function and ak is the learning rate. Fig. 2 indicates 
the MLP neural network used in this study.

Table 2 indicates the parameters of the MLP network 
design, where the parameter ‘show’ indicates the num­
ber of iterations after which the training status is dis­
played; α is the speed of learning; the goal is the target 
error rate. β is the coefficient of momentum and epochs 
are the frequency of training. Training stop when it 
reaches the number of levels determined in epochs, or 
when the amount of the performance function is less 
than the goal parameter. The learning rate is multiplied 
by the slope value and used to update weights and bias. 
If the value of this parameter is too large, the training 
process will not have enough stability and if it is too 
small, the algorithm will need a long time to converge. 
Momentum ratio (β) receives a value between 0 and 1. 
When the momentum ratio is zero, weight changes are 
only from the performance function slope and when it 
is one, weight changes are based on previous weight 
changes and the slope is ignored.

First of all, in the performance of MLP neural net­
works, the weights are selected randomly and then are 

Table 1. The statistical summary of data on air quality in Karaj City.

Parameters Minimum Maximum Average Standard deviation

PM2.5
 (μg/m3) 1.00 91.00 26.50 18.02

PM10
 (μg/m3) 4.00 180.00 39.00 22.33

Temperature (°C) -2.10 + 25.80 + 16.3   2.46
CO (ppm) 1.50 4.94 2.20   0.38
SO2

 (ppb) 6 32 13   3.21
NO (ppb) 85 110 88   2.28
NO2

 (ppb) 29 40 32   1.62
NOx

 (ppb) 114 150 120   4.00
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applied to the input of the neural network along with 
randomized bias. After that output prediction are com­
pared with observed output data, and finally the mean 
square error (MSE) is calculated between the observed 
data and predicted data. If the error value is less than 
the desired error set of the network, training stops, 
otherwise, weights and bias will be changed to reduce 
errors.

2. 3  RBF Neural Network
Radial functions are simply a class of functions. In 

principle they could be employed in any sort of model, 
linear or nonlinear. Fig. 3 presents a RBF network, 
each of n components of the input vector x feed for­
ward to m basis functions whose outputs are linearly 
combined with weights {wj}m

j = 1 into the network out­
put f(x) (Orr, 1996).

Compared to MLP neural networks, RBF neural net­
works need less time to design and more neurons are 
necessary. When there are many training vectors, these 
networks have the best performance (Cohen and Intra­
tor, 2002). The procedure in these networks is: the 
training process continues by increasing the number of 
hidden layer neurons until the performance function 

reaches the target value or until it reaches the maximum 
number of neurons (the number of data).

The RBF neural networks have an easy architecture. 
Their structure includes an input layer, a single hidden 
layer, and an output layer, which at each output node 
makes available a linear combination of the outputs of 
the hidden-layer nodes. Training an RBF is comprised 
of two steps. First, the basic functions are established 
using an algorithm to cluster data in the training set. 
Kohohen self-organizing maps (SOMs) or a k-means 
clustering algorithm has been most typically used. 
Kohohen SOMs (Kohohen, 1984) are a form of ‘self-
organizing’ neural network that learn to differentiate 
patterns within input data. A SOM will, consequently, 
cluster an input data according to perceived patterns 

Fig. 2. Schematic of the MLP network in this study.
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Table 2. Characters of MLP network training parameters.
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Fig. 3. Diagram of RBF network.
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without having to be given a corresponding output res­
ponse. K means clustering and organizing all objects 
into a predefined number of groups by minimizing the 
total squared Euclidean distance for every object re­
garding its nearest cluster Centre. Nevertheless, other 
techniques, such as orthogonal least squares and maxi 
min algorithms, have also been applied (Song, 1996). 
Next, the weights linking the hidden and the output 
layer are calculated directly using simple matrix inver­
sion and multiplication. The direct calculation of wei­
ghts in an RBF makes it far quicker to train than an 
equivalent MLP (Dawson and Wibly, 2001).

2. 4  Model Efficiency
To determine the amount of error in predicting PM2.5 

and to evaluate the performance of the models, we app­
lied a Root Mean Squared Error (RMSE) and a Mean 
Bias Error (MBE) which are indicated in Equations 7 
and 8. Also, we applied the Nash-Sutcliffe Efficiency 
Coefficient (E), coefficient of determination (R2) and 
the Index of Agreement (IA), between the observed 
and predicted data to illustrate the validity of the model  

(Feng et al., 2015; Voukantsis et al., 2011; Krause et 
al., 2005).

	 (7)

	 (8)

	 (9)

	 (10)

	 (11)

Where P and M are the predicted and the observed 
values of PM2.5 at the time t, respectively, and —M and —P are the average of predicted and observed values, 
respectively and n is the number of data.

2. 5  Markov Chain
Several mathematical methods have been used to 

measure the concentration of air pollutants such as 
Markov chain model, which was used in this study. 
Markov chain is a mathematical method for modeling 
of probabilistic processes. Two features characterize a 

Markov chain: (a) state space and (b) level. If we de­
fine the Karaj weather as a system, its state space (S) 
in a given hour will be one of three positions in Eq. 12 

(Chung and AitSahlia, 2003).

S = {g, s, u}	 (12)

Where g is the duration of the day with good air 
quality. s is sensitive hours and u represents the dura­
tion of the day with unhealthy air quality. A Markov 
chain level specifies that the current state of the sys­
tem depends on how many of the previous states. To 
determine the most suitable level in a Markov chain 
several tests are available. We used the Akaike infor­
mation criterion (AIC) and the Bayesian information 
criterion (BIC) tests (Eq. 13 and 14). These tests were 
performed for different levels and the most suitable 
criteria were selected based on the lowest AIC or BIC. 
The AIC and the BIC tests are based on likelihood 
functions and the likelihood values of a Markov chain, 
which from zero likelihood (L0), the first (L1), second 

(L2) and third (L3) according to equations 15 to 18 

(Taylor and Karlin, 1998).

AIC(m) = -2Lm + 2Sm(S-1)	 (13)

BIC(m) = -2Lm + 2Sm Ln(S-1)	 (14)

	 (15)

	 (16)

	 (17)

	 (18)

Where S is the number of states, m is the order of the 
Markov chain; n and  are the transition count (num­
ber of data) and estimated transition probabilities, res­
pectively. The nij is the observed transition count for a 
binary time series. For example, the transition count n00 
specifies the number of consecutive pairs 0’s in time 
series (Wilks, 2006). More information is available by 
Wilks, 2006.

In this study, according to the results of the AIC and 
BIC tests, a Markov chain was defined from the first 
level. Equation 19 indicates its mathematical expres­
sion (Logofet and Lensnaya, 2000).

Pr{Xt|Xt-1, Xt-2,…,X1} = Pr{Xt|Xt-1}	 (19)
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According to equation 18, the state of a variable in 
time t, Xt, only depends on its state at the time t-1, 
Xt-1, and it does not depend on the path through which 
the system reaches its current state. The behavior of a 
Markov chain can be summarized in the form of a 
matrix of transition probabilities where each of its ele­
ments represents the probability of transition from one 
mode in the past to another mode later. Transition pro­
bability matrix is a k × k matrix, where k is the number 
of members of a state space. Eq. 20 expresses a case of 
a transfer matrix and Eq. 21 expresses the first level of 
a three-state Markov Chain transition probability mat­
rix used in this study (Shamshad et al., 2005).

	 (20)

	 (21)

Where subtitles g, s and u as mentioned previously 
represent time with good, sensitive and unhealthy air 
quality, respectively, as the first subtitle(subscript) is 
related to time t-1 and the second subtitle (subscript) 
is related to time t (e.g. Puu is the probability of occur­
rence of two consecutive unhealthy hours). Each ele­
ment of this matrix is determined based on Eq. 22.

	
(22)

Where n denotes the hours, for example Pgu is the 
probability of occurrence of one hour unhealthy air 
quality after one hour healthy air quality.

By determining the transition probability matrix of 
the Markov chain, several analyses can be carried out 
with the most important of which is the continuing pol­
lution of unhealthy PM2.5. Considering that after the 
occurrence of a continuation of n hours of good air 
quality certainly an hour of sensitive quality or unheal­
thy certainly will occur. Eq. 23 is extracted to calculate 
the probability of n hours of continuing good air quali­
ty, and similarly Eq. 24 and 25 are extracted to calcu­
late the probability of sustainability of n hours of un­
healthy and sensitive air quality.

	 (23)

	 (24)

	 (25)

3. Results and discussion
Table 3 indicates the correlation between parameters 

in our study. There should not be a high correlation be­
tween parameters in a stimulating process (Kuncheva, 
2004), because then there is no need to utilize complex 
models such as neural network and the problem can be 
easily solved by regression methods. We used 1,300 
data. Correlation was based on Pearson’s. As indicated 
in Table 3, PM2.5 has significant correlations with PM10, 
NO2, NOx, SO2, CO at 1% significance level. Howev­
er, according to the results of Table 3, very weak cor­
relation exists between PM2.5 and each of other param­
eters including PM10

 (0.137), NO (0.072), NO2
 (0.128), 

NOx
 (0.101), SO2

 (0.116) and CO (0.289) parameters. 
Because of very weak correlation exists between PM2.5 
and each of the input parameters. Therefore, we used 
the parameters as inputs to the neural network.

3. 1  ‌�Determining the Optimal Parameters in 
Predicting the Amount of PM2.5

One of the major issues affecting the performance of 
a neural network is to select the input parameters to 
train the network. For this purpose, various algorithms 
have been used in previous studies (Niska et al., 2006; 
Eleuteri et al., 2005; Kohavi and John, 1997). The use 
of these methods has limitations and errors; therefore, 
in this study the decision on the choice of these param­
eters was based on their performance in the network 
training. Therefore, various models were applied and 
their performance were compared (Table 4). In all of 
these models, we applied two hidden layers with 15 
neurons in the each layer (15 neurons in the first layer 

Table 3. The cross correlation coefficients between different 
air pollutant parameters.

PM2.5 PM10 NO NO2 NOx SO2 CO

PM2.5
PM10
NO
NO2
NOx
SO2
CO

1
0.137
0.072
0.128
0.101
0.116
0.289

1
0.258
0.343
0.306
0.208
0.289

1
0.829
0.971
0.381
0.139

1
0.937
0.508
0.432

1
0.453
0.272

1
0.185 1

Table 4. Input parameters in different neural networks.

Models NO NO2 NOx PM10 SO2 CO Temperature

ANN1 * * *
ANN2 * * * *
ANN3 * * *
ANN4 * * * *
ANN5 * * *
ANN6 * * * *
ANN7 * * * *

T: Tan-sigmoid, L: Log-Sigmoid
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and 15 neurons in second layer) and type of transfer 
functions in the layers (First layer: tan-sigmoid transfer 
function; and second layer: log-sigmoid transfer func­
tion) were considered, so that the impact of changes in 
input parameters on the network was tangible. For ex­
ample, our ANN6 model was made by using NO, PM10, 
SO2 and temperature as inputs with two hidden layers, 
15 neurons in the first layer and 15 neurons in the sec­
ond layer and transfer functions Tansig and Logsig.

3. 2  MLP Neural Networks
We trained the network using 1,300 data, to predict 

hourly concentrations of PM2.5 in Karaj City. To deter­
mine the most suitable network in predicting output, 
we changed the characteristics of the network such as, 
inputs, number of neurons in the hidden layers, type of 
transfer functions, learning rate and momentum factors. 
To choose the most accurate and reliable model, the 
amount of errors, R2, IA and E were computed. As a 
result, it was revealed that the network in which input 
parameters were CO, NOx, PM10 and temperature, 
(ANN7), had a better performance than the other sce­
narios (Table 5).

After selecting the optimal input parameters and app­
ropriate number of hidden layers (ANN7), the effects 
of the other main factors in ANN performance (normal­
izing data) were evaluated. Networks using input data 
CO, NOx, PM10 and temperature were trained once by 

normalizing data and once without it. The number of 
neurons in the hidden layers in the MLP networks was 
changed using trial and error and were automatically 
changed in RBF neural networks from 0 to 1,488 (num­
ber of data). Table 6 indicates the characteristic of 
ANN7 applied in our study.

Fig. 4 indicates the performance of various networks. 
Normalization of the data improved network perfor­
mance. Increasing the number of neurons in the hidden 
layer in the MLP and the RBF networks reduced fore­
cast error and increased the coefficient of determina­
tion. A network made with two hidden layers includ­
ing 19 neurons in the first layer and 16 neurons in the 
second layer, using the normalized data (FN19/16) had 
a coefficient of determination, efficiency (E), RMSE 
and MBE equal to 0.92, 0.981, 1.25 and 0.0545, res­
pectively. The network had the best performance among 
the MLP networks which we developed (Fig. 4).

Fig. 5 illustrated the comparison of the observed data 
with the predicted data using MLP network with 188 
data test for PM2.5 parameter. The coefficient of deter­
mination was 0.92 and the RMSE was 1.25. The result 
indicates the good workability of the model.

3. 3  ‌�The Effect of Learning Rate and 
Momentum Factor

Fig. 6 indicates the effect of the learning rate and mo­
mentum factor in the performance of MLP networks. 
First, we fixed the rate of learning (on each of the val­
ues: α = 0.05, 0.2, 0.4, 0.65, 0.8, 0.95). We increased 
the momentum coefficient (β) from 0.05 to 0.95 in steps 
of 0.05 and trained and tested each step 20 times. Each 
of the network errors in predicting PM2.5 values were 
averaged and considered as the error value for a model 
with factor of momentum and learning rate. These 
tests were made on the MLP model with two hidden 
layers (FN19/16). The results indicated that increasing 
the learning rate caused weakens of the network per­
formance. On the other hand, lower values in the learn­
ing rate made the learning process time-consuming. 

Table 5. The results of the MLP model with different sce­
narios of inputs.

Models R2 IA E RMSE      MBE

ANN1
ANN2
ANN3
ANN4
ANN5
ANN6
ANN7

0.77
0.78
0.74
0.80
0.79
0.80
0.83

0.78
0.79
0.77
0.82
0.81
0.83
0.84

0.68
0.65
0.61
0.78
0.75
0.81
0.88

5.72
6.35
7.04
4.41
4.89
3.58
2.76

0.331
0.359
0.386
0.281
0.316
0.275
0.063

Table 6. the characteristic of the model ANN7.

        Network type MLP MLP RBF

Input data normalization No Yes No
Train function trainlm trainlm -
Number of layers 2 2 1
Properties for layer 1  
number of neurons

0-20
(Trial and error)

0-20
(Trial and error)

Selected by network 

(0-Number of data (1,488))
Transfer function Tansig Tansig Radbas
Properties for layer 2  
number of neurons

0-20
(Trial and error)

0-20
(Trial and error) -

Transfer function Logsig Logsig -

Tansig: tan-sigmoid transfer function; Logsig: log-sigmoid transfer function
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Increasing momentum from 0.05 to 0.95 first increased 
errors, then improved performance and reduced errors. 
Therefore, we concluded that determining changes of 
weight by using any of the slopes of efficiency func­
tion or previous weight changes alone improves net­
work performance compared to when the both of these 
factors are involved in determining the new weight. To 
select the momentum factor in the range of 0 to 1 im­
proved network performance in predicting PM2.5 in our 
research.

Correct designing of the parameters of an MLP neu­
ral network such as input parameter, the number of 
layers, the number of hidden layer neurons, transfer 
functions, learning rate and momentum factors and 
normalizing data also increases the accuracy. We con­

Fig. 6. The effect of learning rate and momentum factors in 
the RMSE rates in the MLP neural network.
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Fig. 4. The performance of MLP networks with various structures (N: normalized data, 0: without normalization).
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sidered all mentioned parameters and determined the 
effect of learning rate and momentum factor in the 
amount of RMSE in the MLP neural network (Fig. 6) 
which causes a good performance of predicting PM2.5 
in the Karaj City. Voukantsis et al. (2011) used a prin­
cipal component analysis to select input parameters for 
MLP neural network and predicted PM10 and PM2.5. 
They obtained IA = 0.8. We carried out other method 
for selecting input parameters and selected those input 
parameters which each of input parameter had a low 
correlation coefficient with PM2.5 parameter. Index of 
agreement (IA) in our study for ANN7 was 0.84. The 
advantage of their work was to select a few meteoro­
logical parameters as input to the ANN. Our input 
parameters for MLP and RBF were NO, NO2, NOx, 
PM10, SO2 and temperature. However, meteorological 
data was not available for authors. Bahari et al. (2014) 
predicted PM2.5 concentrations, in one station, in Teh­
ran using an MLP neural network. Their input parame­
ters were temperature, wind speed, wind direction, rel­
ative humidity, and cloud cover and inversion strength. 
They did not describe the method of selecting input 
parameters to the ANNs. The R2 of the study were be­
tween 0.61 and 0.79. However, the R2 in our study for 
MLP and RBF was 0.92 and 0.93, respectively.

We compared the results our MLP neural network 
with the results of Voukantsis et al. (2011) and Feng et 
al. (2015) and found that our model presented a suit­
able performance in predicting PM2.5 concentrations in 
Karaj City. Feng et al. (2015) obtained RMSE rate 
between 28 to 36 for one day and two days PM2.5 pre­
diction using an MLP neural network. The amount of 
RSME in the MLP neural network was 1.25 for FN19/ 
16 model. Their RSME results could be due to the 
smaller number of data used in their studies and may 
need a longer data collection. In fact, they changed in 

concentrations of suspended particles over the year 
lead to a reduction in network accuracy in predicting 
the amount of this parameter.

3. 4  RBF Neural Network
In RBF networks that are formed from a hidden layer 

and Radial Basis transfer function, the number of neu­
rons starts from zero and increases. At each stage, error 
calculated and reported. This process continues until 
the error decreases to zero, or the number of neurons is 
equal to the number of input data. Fig. 7 indicates the 
changes of prediction error for PM2.5 due to the incre­
ase of the number of neurons of hidden layer using this 
method. The root mean square error of the neurons in 
this method decreased with increasing neurons from 
7.88 to 2e-06 and the coefficient of determination rea­
ched 0.93. The results indicate the proper functioning 
of this network in predicting the concentration of PM2.5, 
without requiring any design. The coefficient of deter­
mination between observed data and predicted data 

Fig. 7. The changes of RMSE through increasing the num­
ber of neurons in RBF network.
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reached 0.93 which indicates the reliability of RBF in 
predicting of PM2.5

 (Fig. 8).
The training of neural network structure of artificial 

neural network which was used in our study was, acc­
ording to design of continuous statistical model by 
using past data. This artificial neural network presents 
a numerical description of a mathematical structure 
which is able to predict the physical condition of air 
pollution for 24 or 48 hours in advance. By increasing 
the length of existing data, we can increase the possi­
bility of predictions durations.

3. 5  Markov Chain
Equation 26 presents the transition probability matrix 

and Fig. 9 indicates its graphical representation for 9 
different transition mode. The results of this matrix 
state that, in the event of good or sensitive air quality, 
there is the possibility of repetition of the above condi­
tion (probability 71% and 89% respectively). Howev­
er, in the event of pollution and poor quality in one of 
night and day hours, the possibility of repeating or 
transferring to sensitive state is somehow the same 
value (respectively 48 and 51 percent probability) and 
there is no high chance for the air to be healthy in the 
following hours. Generally, in the case of healthy, fresh 
air, the likelihood of its re-occurrence, unhealthy state, 
the possibility of switching to a sensitive air quality, 
and in the case of sensitive weather, the likelihood of 
its continuation get the highest value.

	 (26)P(3 × 3)

Table 7 presents the number of incidents and the 
probability of selection for each of the two data sets 
initial calculations (1,300 data) and test (data 188) with 
the error between them. By calculating the transition 
probability matrix for 188 test data, showed that the 
matrix with slight error is similar to the calculated 
matrix for the raw data. For example, the possibility of 
transfer of clean air quality to sensitive state (gs) was 
calculated as 0.28 that compared with the probability 
of the situation in test data that was equal to 0.2758, 
with absolute error of 0.014 has acceptable accuracy 
and precision. As a result, the probability of occurrence 
of PM2.5 pollution in different periods is predictable 
using this method.

Fig. 9(a-c) indicates the continuation of n hour for 2 
hours to 1 day for each of air quality conditions. The 
vertical axis is the likelihood to maintain a state and 
the horizontal axis presents duration time. For exam­
ple, in the first curve (Fig. 9(a)), P(n) is the probability 
that a good air quality status is maintained for n hours 

and then the situation will change. Fig. 9(c) illustrates 
the high probability of remaining two-hour unhealthy 
state (25%) the poor status of PM2.5 pollutant. Howev­
er, the likelihood of continuation of this situation to 
fourth and fifth hours is reduced and there will be no 
substantial risk of the continuity of too much pollu­
tion. Also, due to the low likelihood of continuation of 

Fig. 9. The probability of continuation of n hour (a) good, 
(b) sensitive, (c) unhealthy AQ statement.
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healthy condition and opposite to that its relative high 
likelihood in some hours or daily continuation of sen­
sitive quality, we will not experience favorable weath­
er conditions in terms of particulate pollution, espe­
cially for sensitive groups.

The MLP, RBF and Markov chain are independent 
model. The MLP and RBF belong to a family of artifi­
cial intelligence neural network, which they can pre­
dict future physical quantities of PM2.5 in a city. The 
RBF results may be accurate than MLP model. The 
Markov chain model can describe the probability of 
occurrence of PM2.5 in different periods and also indi­
cates the quality of air in a city in three forms, includ­
ing good quality, sensitive and unhealthy conditions.

4. Conclusion
Considering the results and discussion of using the 

MLP neural network, RBF neural network and Marko 
chain to predict PM2.5 pollutant in the Karaj city, Iran, 
we summarized the results as follows:

1. ‌�The MLP neural network needs a suitable design for 
optimal performance. We developed an MLP neural 
network containing two hidden layers with 19 neu­
rons in the first layer and 16 neurons in the second 
layer. The MBE was 0.0545 which indicates the 
adequacy of the MLP neural network. The R2 and 
Index of agreement (IA) between the observed data 
and the predicted data were 0.92 and 0.93, respec­
tively.

2. ‌�Change of momentum and learning coefficients 
indicated that increasing the learning rate increases 
MLP network error, and thus choosing lower the 
learning rate improves network performance. On the 
other hand, low learning rate model reduces model­
ing speed. The increase momentum rate from 0 to 1 
increases the error and then reduces it. This issue 
proves that the selection of new weight based on the 
performance function slope or previous weight will 
result in better network performance.

3. ‌�Selecting appropriate learning rate and momentum 
factors caused improving performance of artificial 

neural network.
4. ‌�The RBF neural network using a hidden layer with 

transfer radial basis had an easy and good perfor­
mance to predict hourly PM2.5 pollutant. By increas­
ing the number of neurons from zero to 1,488 (equal 
to the number of data) the errors of this network 
dropped from 7.88 to 2E-06 and coefficient of deter­
mination between observed data and predicted data 
reached 0.92.

5. ‌�The RBF prediction of hourly PM2.5 reaches to more 
accurate results if we compare to the MLP neural 
network.

6. ‌�Markov chain model results indicated that the air 
quality in the coming months of 2015, will continue 
in a sensitive state, which is dangerous for people 
with heart disease and respiratory problems.
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