
ABSTRACT

Large quantities of air pollutants are released into 
the atmosphere and hence, must be monitored and 
routinely assessed for their health implications. This 
paper proposes a stochastic technique to predict un-
observed hazardous air pollutants (HAPs), especially 
Benzo[a]pyrene (BaP), which can have negative ef-
fects on human health. The proposed approach con-
structs a nearest-neighbor structure by incorporating 
the linkage between BaP and meteorology and me-
teorological effects. This approach is adopted in order 
to predict unobserved BaP concentrations based on 
observed (or forecasted) meteorological conditions, 
including temperature, precipitation, wind speed, 
and air quality. The effects of BaP on human health 
are examined by characterizing the cancer risk. The 
efficient prediction provides useful information relat-
ing to the optimal monitoring period and projections 
of future BaP concentrations for both industrial and 
residential areas within Korea.

Key words: Benzo[a]pyrene, Cancer risk, Correla-
tion function, K-nearest neighbor approach, Sto-
chastic prediction

1. INTRODUCTION

Unlike many conventional air pollutants, such as 
SO2, NOx, CO, and O3, hazardous air pollutants (HAPs) 
represent a serious risk to human health due to their car-
cinogenic properties and non-threshold nature of tox-
icity. Long-term exposure to HAPs, even at low levels, 
is known to have significant negative effects on human 
health (WHO, 2000). Among the many types of HAPs, 
polycyclic aromatic hydrocarbons (PAHs) have received 
special attention, as several PAHs are considered to be 
potential human carcinogens. Benzo[a]pyrene (BaP), a 

PAH, has been classified as a WHO group 1 carcinogen 

(WHO, 2010). PAHs are emitted into the atmosphere 
primarily through the combustion of fossil fuel and 
wood. Existing knowledge of the occurrence and chem-
istry of PAHs has previously been outlined in several 
reports (Suvarapu et al., 2012a, b; WHO, 1983).

Air quality management in Korea has been mainly 
focused on reducing the volumes of emissions of a 
number of priority pollutants. Recently, reducing risk 
to the general public has become the primary concern 
of many countries. Monitoring air quality is a key step 
for the risk assessment of a specific air pollutant, as it 
provides direct data relating to the exposure level for 
the general public (NRC, 1983). An accurate estimation 
of the exposure level requires a large number of reliable 
databases, which are available for only typical criteria 
pollutants such as SO2, NOx, and O3 because these 
pollutants may be monitored continuously using auto-
matic monitoring instruments. By contrast, it is often 
difficult to measure HAPs because this measurement 
requires more sophisticated sampling and analytical 
skills and because automatic monitoring technologies 
have not yet been fully established for many HAPs. In 
this regard, the daily monitoring of HAPs is not practi-
cal in many circumstances due to associated cost and 
labor constraints. As a result, HAPs are usually moni-
tored only partially or intermittently in many countries. 
Hence, risk assessment based on such partial data may 
not be reliable, increasing the level of uncertainty re-
lating to human health risk assessments.

A number of studies have attempted to characterize 
the atmospheric concentrations of PAHs in Korea. Park 
et al. (2002) reported that from 1998 to 1999 PAH con-
centrations in the Seoul Metropolitan Area (SMA) 
were significantly affected by fossil fuel usage for res-
idential heating (also see Kim et al., 2012;  Bae et al., 
2002). There have also been some efforts in Korea to 
develop statistical models for describing the dynamic 
behavior of ambient air pollutants such as O3 and par-
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ticulate matter (PM), but no attempt has been made for 
any HAPs. Mastral et al. (2003) studied spatial and tem-
poral PAH concentrations in Spain. Callén et al. (2010) 
considered a multivariate linear regression model to 
estimate BaP concentrations in Spain, based on meteo-
rological conditions and PM10 concentrations. A statis-
tical model is characterized by simplifying assumptions 
in the modeling scheme (while preserving the most 
important dynamic features) and quantifying the level 
of uncertainty through the probabilistic description of 
processes (Berliner, 2003). Recently, Kim et al. (2013) 
proposed a flexible statistical method for the estima-
tion of unmeasured BaP concentrations within a given 
period of time and for a given site, by using an infer-
ence model established based on partially measured 
BaPs data from the site. The model incorporates the 
linkage between BaPs and meteorological factors, and 
is specifically formulated to identify meteorological 
effects and to allow for seasonal trends. The model is 
used to estimate future temporal fields of BaPs based 
on observed (or forecasted) meteorological conditions, 
including temperature, precipitation, wind speed, and 
air quality. Because observations of BaPs often con-
tain a considerable degree of uncertainty, the model 
allows for this error of measurement.

This paper proposes a stochastic technique to predict 
the unobserved hazardous air pollutants (HAPs), espe-
cially Benzo[a]pyrene (BaP) which can have negative 
effects on human health. The proposed approach con-
structs a nearest-neighbor structure by incorporating 
the linkage between BaP and meteorological factors. 
Based on the proposed approach, we can determine the 
appropriate resolution of measured BaP concentrations 
to obtain annual BaP concentrations and identify outli-
ers within the measured concentrations. Finally, the 
paper compares the results of various risk assessments 
between measured BaP data and estimated annual BaP 
data using stochastic prediction. By constructing a 
complete yearly database based on intermittent data 
through the statistical model, this study estimates more 
realistic exposure levels, and thus, enhances the accu-
racy of risk assessments.

2. Stochastic Prediction

Kim et al. (2013) considered a two-stage statistical 
model to estimate the relationships between the BaP 
concentration and other factors such as weather, sea-
sonality, long-term trends, and air pollutants. For t =  
1,…,T and c = 1,…,C, let Yt

c denote the BaP concen-
tration for site c on day t in a given year modeled as a 
gamma distribution, with an annual cycle in the form 
of a sine wave for mean intensity μt

c (see McCullagh 

and Nelder, 1989). Alternatively, a seasonally changed 
intercept model can be considered. Here, μt

c is modeled 
using an autocorrelation term with a time lag, air qual-
ity variables, and meteorological variables as covari-
ates. The potential effect of weather is controlled for 
by including temperature, wind speed, and precipita-
tion. In addition, smooth functions of the calendar time 

(natural cubic splines) are used to adjust for seasonality 
and long-term trends:

log μt
c =μc +αcY c

t-1 +γ1
cCt +γ2

cSt +xt
c′β1

c +zt
c′β2

c,	 (1)

where

• ‌�μc is a logarithm of (constant) baseline BaP concen-
tration for site c.

• ‌�Y c
t-1 is the HAP concentration for site c on the previ-

ous day t-1.
• ‌�Ct =cos(2π(t-181)/365) and St =sin(2π(t-181)/365) 

are cosine and sine waves for the annual cycle.
• ‌�x t

c indicates air quality variables influencing BaP 
concentrations for site c on day t (e.g., SO2, PM10, 
O3, NO2, CO).

• ‌�z t
c indicates meteorological variables for site c on 

day t (e.g., temperature, wind speed, wind direction, 
precipitation amount, precipitation occurrence and 
dew point). To avoid multicollinearity, ambient tem-
perature are deseasonalized.

One of the limitations of stochastic model is a marked 

(strong) sensitivity to observed (or forecasted) meteo-
rological conditions, including temperature, precipita-
tion, wind speed, and air quality. Under the worst-case 
scenario, the statistical model often produces extremely 
high values which are not observed for partially ob-
served BaP concentrations. That is, the models tend to 
overestimate the observed variance of BaP concentra-
tions. To reduce this phenomenon, we introduce new 
approaches toward the prediction of unobserved BaP 
concentrations.

2. 1  Semiparametric Approach
The framework follows a K-nearest neighbor ap-

proach. We describe the framework and the imple
mentation algorithm for temporal BaP concentrations. 
K-nearest neighbor approach queries days similar to  
a given feature vector and identify a subset of days  

(K) similar to the feature day. These K days are then 
weighted using a bi-square weight function and ran-
domly sampled to generate ensembles. Here we incor-
porate K-nearest neighbor approach to detrended loga-
rithm of BaP concentrations, denoted by εt

c. That is,

εt
c = log(Yt

c)- (μc +αcY c
t-1 +γ1

cCt +γ2
cSt +γ3

cPt
c),	 (2)

where Pt
c is an index of the precipitation occurrence 

for site c on day t.
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In a simple K-nearest neighbor approach, the nearest 
neighbors are obtained from the observed data by com-
puting the distance between the unobserved BaP con-
centration and the observed BaP concentration, and the 
neighbors are assigned weights based on their distance. 
The weight function gives more weight to the nearest 
neighbors and less to the farthest neighbors. In gener-
al, the number of nearest neighbors, K is based on the 
heuristic scheme K = N, where N equals the sample 
size (Lall and Sharma, 1996), following the asymptotic 
arguments of Fukunaga (1990). Objective criteria, such 
as generalized cross validation, can also be used. The 
proposed approach aims to compute the distance based 
on the similarity of factors such as air quality variables 
and meteorological variables. That is, for two distinct 
time points, t and t′ for site c, the distance dc(t,t′) can 
be defined by

dc(t,t′) = w1||xt
c-x c

t′ || + w2||z t
c-z c

t′||,	 (3)

where || · || is a matric or distance function. Note that air 
quality variables x t

c and meteorological variables z t
c 

need to be standardized before computing distances. 
The weights w1 and w2 plays a role of tuning the pro
ximities between air quality variables and meteorolog-
ical variables. For a fixed time point t, its neighbors 
are assigned weights based on the K smallest distances 

(say d1,d2,…,dK) from the time point t, as follows:

                 1/dk
β                           exp(-βdk)W(k) = ---------------  or W(k) = ------------------------	 (4)

            ∑ K
j = 11/dj

β                  ∑ K
j = 1exp(-βdj)

for k = 1,…,K. Further extensions to (4) are possible, 
such as extensions to include a more general class of 
functions of distance. The index for site c is omitted 
for brevity for now. The unobserved detrended loga-
rithm of BaP concentrations can then be generated by 
resampling from the observed detrended logarithm of 
BaP concentrations based on the assigned weights, or 
alternatively, can be estimated based on the weighted 
average of the observed detrended logarithm of BaP 
concentrations. Based on resampled or estimated de-
trended logarithm of the BaP concentration, ε̂t

c, we get 
the resampled or estimated BaP concentration Ŷt

c by 
the following equation:

Ŷt
c =exp(μ̂c + α̂cYc

t-1 + γ̂1
cCt + γ̂2

cSt + γ̂3
cPt

c + ε̂t
c),	 (5)

where μ̂c, α̂c, γ̂1
c, γ̂2

c and γ̂3
c are the estimated coeffi-

cients of the trend GLM model fitted to the observed 
BaP concentrations. In principle, we may extend our 
neighbor structure not only to a temporal scale but also 
to a spatial scale. That is, other sites can also be used 
as neighbors. In such cases, a more sophisticated and 
complex measure of distance is required.

2. 2  Parametric Approach
In general, the approach based on resampling has 

unrealistic properties for extremes. That is, it is not 
possible to generate value greater than the highest ob-
served. Because those air quality and meteorological 
factors which are more similar to BaP processes are 
assigned higher weights, the expression (3) accommo-
dates a spatial dependence structure. In general, BaP 
concentrations are assumed to be log-normally distrib-
uted. Here, the BaP concentration Yt

c is modeled as a 
lognormal distribution, as follows:

(log(Y1
c), log(Y2

c),…,log(YT
c))′~MVN(μc,Σc ),	 (6)

where μc = (μ1
c,μ2

c,…,μT
c)′ is a mean trend vector of 

the logarithm of the BaP concentration and Σc is a 
covariance matrix of the logarithm of the BaP concen-
tration process. The mean process μt

c is modeled by

μt
c =μc +αcY c

t-1+γ1
cCt+γ2

cSt+γ3
cPt

c.	 (7)

The temporal dependence among the logarithms of 
BaP concentrations is incorporated by modeling T × T 
covariance matrix Σc whereas the temporal mean trend 
is represented by μt

c. We can parameterize the covari-
ance matrices by variance terms and correlation func-
tions as Σc(t,t′) =σ2r(t,t′).

To avoid the difficulty in dealing with covariance 
matrices, we can consider a simple exponential corre-
lation function as follows:

rβ(dc(t,t′)) = exp(-β|dc(t,t′)),	 (8)

where β(>0) is a function which is used to tune the 
range of individual neighbors. This function provides 
a simple covariance matrix, and the resulting matrices 
can be easily manipulated. Let rβ(dc(t,t′)) =ρdc(t,t′) (i.e., 
ρ= e-β>0). The correlation parameter, β, can be em-
pirically estimated from the data. In principle, we can 
consider a more general correlation function

                (dc(t,t′)/ρ)υρρ,υ(t,t′) = ---------------- κυ(dc(t,t′)/ρ),	 (9)
                  2υ-1Γ(υ)

which is called the Matérn correlation function (Matérn, 
1986) with parameters ρ and ν, evaluated at distance 
dc(t,t′).

Let U and O be the vector of logarithms of unob-
served BaP concentrations and the vector logarithms 
of observed BaP concentrations, respectively. In our 
scheme, assume that U and O are jointly distributed, 
that is,

  U        μu    Σ11  Σ12(   )~((    ),(             )),	 (10)  O        μo    Σ21  Σ22

where Σ11 is the marginal covariance matrix of U, Σ22 
is the marginal covariance matrix of O, and Σ12 is the 
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cross-covariance matrix of U and O. Note that μu, μo, 
Σ11, Σ12, Σ21 and Σ22 are obtained from the rearrange-
ment of μc and Σc. Then,

U|O~(μu-Σ12Σ-1
22(O-μo), Σ11-Σ12Σ-1

22Σ21.	 (11)

The predictor for logarithms of unobserved BaP con-
centrations, U, is then the usual best linear unbiased 
estimator (BLUE) for the prediction problem. There-
fore, we may estimate BaP concentration by exp(μu-
Σ12Σ-1

22(O-μo)) with the uncertainty in terms of exp 
(Σ11-Σ12Σ-1

22 Σ21). Note that the parametric approach 
provides prediction with uncertainty.

Because BaP concentrations are typically available 
on a daily basis, considering various time lag models 
for xt or zt allows for greater flexibility in exploring 
the lag between air quality and meteorological vari-
ables and BaP concentrations, as compared to single-
lag models. Another topic of special interest lies in the 
hierarchical modeling of the multivariate or spatial 
structure of BaP concentrations. Here, this paper fo-
cuses on the temporal behavior of BaP concentrations.

3. Application to BaP data

3. 1  Air Quality Data
The BaP and other air quality data sets used in this 

paper are obtained from a field study conducted in the 
Sihwa-Banwol national industrial complex, one of the 
largest industrial areas in Korea (Seo, 2010). The main 
purpose of the field study was to characterize the oc-
currence and concentrations of a wide range of HAPs 
in the atmosphere of the industrial complex. Temporal, 
spatial, and seasonal variations in HAP concentrations 

were determined at four sites (two industrial and two 
residential sites) over a two-year period, from August 
2005 to July 2007. Fig. 1 shows the location of the in-
dustrial complex as well as the specific locations of air 
sampling sites. Seasonal HAP monitoring campaigns 
were carried out throughout the complex, where 12 
and 10 consecutive days of monitoring are carried out 
for each season in the first year and the second year of 
operation, respectively. Detailed monitoring periods 
and air quality data for each site are summarized in 
Table 1. Samples of total suspended particles (TSPs) 
are collected by high-volume sampling for 24 h, and 
are used for PAH analysis. A total of 38 different PAH 
compounds are determined by GC/MS. Sampling, 
analyses, and quality control for PAHs are carried out 
in accordance with the US EPA TO-13A protocol (US 
EPA, 1999) and the ISO method (ISO, 2000). Interpre-
tations of PAH determinations should be based on the 
objective of PAH measurement, e.g., whether the in-
tention is to monitor for concentrations which exceed 
reference values, analyzing causes, or conducting epi-
demiological surveys. In the case of BaP, the PAH 
substance most frequently measured in air pollution 
analyses, close attention should be paid to the implica-
tions which are associated with these concentrations, 
as the concentrations themselves can be used to indi-
cate the carcinogenic activity of PAH mixtures that 
regularly occur in ambient air (ISO, 2000). According 
to the WHO Air Quality Guidelines (WHO, 2000), 
BaP is a useful indicator of the carcinogenic potential 
of total PAH emissions with respect to lung cancer. 
For these reasons, BaP is selected for this paper’s anal-
ysis as a good representative PAH.

PAH sampling sites are all located within national 

Fig. 1. Location of sampling sites for benzo(a)pyrene.
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air quality monitoring stations operated by the Korean 
Ministry of Environment (see Fig. 1). Hourly data on 
other general air quality parameters such as SO2, CO, 
NO2, PM10, and O3, were obtained from the national 
air quality database. In addition, hourly data on ambi-
ent temperature and wind speed were obtained from 
the National AWS (automatic weather station), which 
is located approximately 5 km from the PAH sampling 
sites. Data for relative humidity and solar radiation data 
were not available from the AWS. The daily average 
air quality and meteorological data was recalculated so 
as to match the PAH sampling time. It has been report-
ed that atmospheric concentrations of PAHs are well 
related to CO and NO2 as byproducts of combustion 
from many sources (Saud et al., 2011; Ravindra et al., 
2008; Park et al., 2002). In addition, ambient levels of 
PAHs are higher in winter and lower in summer, and 
thus, indicate a negative correlation between PAHs 
and ambient temperature (Lee et al., 2011; Park et al., 
2002).

3. 2  Prediction of BaP Concentrations
Through the semi-parametric approach, we consid-

ered the weight function to be proportional to the ex-
ponentiated distance, as the augmented BaP concentra-
tions based on the weight function proportional to the 
inverse of distance fail to produce enough variability of 
BaP concentrations. Various percentiles of daily BaP 
concentrations are compared in Table 2. Based on the 

parametrically augmented BaPs, BaP concentrations 
show similar variability to the observed BaP concen-
trations. However, semiparametrically augmented BaPs 
tends to be underestimated, especially during their peak 
season (December). The proposed approaches can pro-
vide a useful tool for exploring unobserved periods. 
Because of the small number of disconnected observa-
tions, the effects of autocorrelation terms in the long-
term trend model are limited. However, the autocorre-
lation of air quality and meteorological variables still 
indirectly takes into account the effect of the autocor-
relation term on BaP concentrations. In addition, re-
taining the autocorrelation term as a covariate makes 
the interpretation of the model more difficult and com-
plicates the relationships between air quality and me-
teorological variables.

Figs. 2 and 3 show the performance of the proposed 
approaches in reproducing BaP concentrations for four 
sites. Time series of daily BaP concentrations are sim-
ulated over a one-year period. Augmented BaP con-
centrations show much less variability during summer 
months than winter months, and the observation peri-
od may miss the peak season (December) of BaP con-
centrations. Estimated cumulative density functions of 
seasonally observed BaP concentrations were com-
pared with those of semiparametrically and parametri-
cally augmented BaP concentrations (see Fig. 4). Figs. 
5 and 6 clearly show the variability of observed and 
augmented BaP concentrations, both regionally and 

Table 1. Summary of air quality, meteorological, and BaP data.

6/24/2005-7/23/2006 Site A Site B Site C Site D

Variable N Mean SD Mean SD Mean SD Mean SD

SO2
 (ppb) 364 9.4 6.2 10.8 5.2 9.6 5.4 6.5 3.1

PM10
 (μg/m3) 364 71.7 70.5 90.0 57.4 96.2 76.6 57.3 44.3

O3
 (ppb) 364 20.9 11.5 18.3 9.2 20.8 10.6 17.4 8.7

NO2
 (ppb) 364 29.4 13.2 23.8 10.8 24.3 12.1 30.4 13.2

CO (ppb) 364 620.8 366.6 1013.0 378.1 817.7 546.5 588.0 330.6
Temp (°C) 364 12.7 10.4 12.7 10.4 12.7 10.4 12.7 10.4
Wind speed (m/s) 364 1.8 0.8 1.8 0.8 1.8 0.8 1.8 0.8
Rain (mm) 364 3.1 10.8 3.1 10.8 3.1 10.8 3.1 10.8
Benzo[a]pyrene (ng/m3) 48 1.0 1.1 1.2 1.2 1.0 1.0 1.1 1.2

Table 2. Various percentiles of observed and augmented BaP concentrations (ng/m3) for four sites.

Percentile
Observed Semiparametic Parametic

80th 90th 95th 99th 80th 90th 95th 99th 80th 90th 95th 99th

Site A 1.5 2.4 3.2 4.3 1.7 2.2 2.5 3.7 1.8 2.4 3.1 3.8
Site B 1.9 2.9 3.3 4.8 1.8 2.4 2.8 3.9 1.9 2.4 3.2 4.3
Site C 1.4 2.5 3.4 3.7 1.6 2.2 2.5 3.4 1.6 2.3 2.6 3.6
Site D 1.7 2.9 3.7 4.4 2.2 2.7 3.4 3.8 2.1 2.6 3.1 4.0
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Fig. 2. Observed BaP concentrations (black) for the period 2005-2006 and (semi-parametrically) augmented BaP concentrations 

(grey) for four sites (A, B, D, and C; clockwise from top left).
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Fig. 3. Observed BaP concentrations (black) for the period 2005-2006 and (parametrically) augmented BaP concentrations (grey) 
with uncertainty (dotted) for four sites (A, B, D, and C; clockwise from top left).
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Fig. 4. Esitmated cumulative density functions based on semi-parametrically augmented BaP concentrations (grey) and paramet-
rically augmented BaP concentrations (black) for four sites (A, B, D, and C; clockwise from top left; the dashed line corresponds 
to observed BaP concentrations).
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Fig. 5. Boxplots of observed and modeled BaP concentrations for four sites (A, B, D, and C; clockwise from top left).
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seasonally, particularly for high BaP concentrations. 
Their inconsistency is partly due to the lack of align-
ment of observation times, and is potentially due to 
adverse meteorological conditions (e.g., severe epi-
sodes). Fig. 7 shows that the proposed model well pre-

serves the relationship between BaP concentrations 
near sites. The forecasting behavior of the proposed 
model and the approach taken in the previous section 
is assessed through a standard “hold-out” experiment 

(see West and Harrison, 1999). More specifically, the 

Fig. 6. Boxplots of observed and modeled BaP concentrations for site A for spring (top left), summer (top right), autumn (bottom 
left), and winter (bottom right).
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Fig. 7. Plots of observed BaP concentrations (black), semi-parametrically (left) and parametrically (right) augmented BaP con-
centrations 9 gray) near sites.
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model parameters are estimated using observed BaP 
concentrations after the removal of a subset (called the 
validation set) of data from the 2005-2006 season, and 
forecasting of the removed BaP concentrations. The 
forecast is then compared with actual BaP concentra-
tions during the validation period. During the forecast 
period, variables for the observed air quality data and 
meteorological conditions are used for each region. 
Fig. 8 shows the actual BaP concentrations for the 
2005-2006 season, as well as their predicted intervals 
for the Shiwha residential area (site A).

3. 3  Effects on Risk Assessment
For the assessment of our approaches, as well as to 

determine the distribution of this variable over the 
population residing in the risk area, cancer risk was 
examined for different HAP sources. First, an expo-
sure model was first constructed based on the lifetime 
average daily dose (LADD) involving the active sur-
face area concentration of the HAP (C, μg/m3), the 
inhalation rate (IR, m3/day), exposure duration (ED, 
years), exposure frequency (EF, days/year), absorption 
efficiency (AB, %), body weight (BW, kg), and the 
averaging time (AT, days):

               C × IR × ED × EF × AB
LADD = ----------------------------------.	 (12)
                         BW × AT

Finally, the cancer risk for a specific HAP can be 
obtained using inhalation slope factor (SF, (μg/kg/
day)-1) as follows:

Cancer Risk = LADD × SF,	 (13)

where SF = UR × BW
--------------
      IR

 and UR is inhalation unit risk. 

The level of chemical pollution was modeled as a func-
tion of other variables, some of which are random vari-
ables, and the distribution of the variable of interest was  
generated through a computer simulation. This then 
allowed for the determination of whether the probabil-
ity of the variable of interest exceeds acceptable levels.

The Monte Carlo simulation has been used for risk 
assessment purposes because of its increased comput-
ing power. Here, it includes LADD and Cancer Risk as 
functions of the other variables. Each recalculation 
produces new random values for IR, EF, and BW, and 
consequently, for LADD and Cancer Risk to simulate 
the situation for a random individual from the popula-
tion at risk. Fig. 9 compares the distribution of the 
cancer risk for the observed BaP concentrations with 
that for augmented BaP concentrations, for both indus-
trial and residential areas in Korea. Note that augment-
ed BaP concentrations provide more variations in the 
cancer risk (ng/m3) of residential area but there is not 
“worst-case” scenario with extremely high cancer risk 
values.

Table 3. Summary of terms associated with the cancer risk.

Terms Unit Variability

Unit risk (UR) per μg/m3 7.8e-06
Inhalation rate (IR) m3/day N (13, 0.92)
Exposure duration (ED) years 25
Frequency of exposure (EF) days/year Triangle distribution 

(180,345,365)
Absorption efficiency (AB) % 100
Body weight (BW) kg N (62, 8.82)
Averaging time (AT) days 70 years 

= 25,500 days

Fig. 8. Observed BaP concentrations (gray x) for the winter 2005-2006 period and corresponding predicted intervals of BaP con-
centrations (gray) for site A.
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4. Concluding Remarks

For various reasons, BaP concentrations are observed 
only for 48 days in a full year at the site in question 

(12 days in each season). Thus, it is very difficult to 
estimate unobserved HAP concentrations. It has been 
shown that the proposed approaches can be extended to 
effectively estimate BaP concentrations. The proposed 
nearest-neighboring structure in terms of observed 
meteorological conditions, including temperature, pre-
cipitation, wind speed, and air quality. Based on aug-
mented BaP concentrations, it shows much less vari-
ability during summer months, and unobserved BaP 
concentrations can be estimated through more realistic 
low-frequency statistical properties and without any 
apparent deterioration in high-frequency characteris-
tics. With this improvement, the proposed approach 
should provide more realistic risk assessments based 
on Monte Carlo simulations.

Studies of the behavior of BaPs should rely heavily 
on both observations and physically based models. 
However, our approach might fail to give a full physi-
cal explanation of the heterogeneity of BaP dynamics. 
This is different from traditional physical modeling, 
perhaps with data-based parameter estimates, and tra-
ditional statistical modeling, perhaps relying on vague, 

qualitative physical reasoning. That is, analysis was 
mainly focused on parameters and stochastic compo-
nents of uncertainty. The structural uncertainty is satis-
fied by performing validation of the study, in which 
the goodness of fit of the model is assessed.

Implanting spatial dependence, which was not con-
sidered here, into our approaches is another challenge. 
In principle, it can be incorporated by a conditional 
autoregressive (CAR) model based on proximity matrix 
or by modeling covariance matrix Σ, which is parame-
terized by variance term and correlation function. That 
is, σ(s,s′) =σ2Rρ,ν(s,s′), where Rρ,ν(s,s′) is a positive 
definite correlation function at two sites s and s′ in R2. 
One important limitation of the proposed approaches 
is the unrealistic estimation of extreme values. That is, 
it is hard to accurately estimate the maximum BaP con-
centrations which occur.
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