 
1. 
Bahari, R.A., Ali Abssaspour, R., Pahlavi, P., (2014), Prediction of PM_{2.5} concentrations using temperature inversion effects based on an artificial neural network, The ISPRS international conference of Geospatial information research, 1517 November, Tehran, Iran.

2. 
Caputo, M., Gimenez, M., Schlamp, M., (2003), Intercomparison of atmospheric dispersion models, Atmospheric Environment, 37, p24352449.

3. 
Chung, K.L., Farid, AitSahlia, (2003), Elementary Probability Theory: With Stochastic Processes and an Introduction to Mathematical Finance, Springer Undergraduate Texts in Mathematics and Technology, ISSN 01726056. 
4. 
Cohen, S., Intrator, N., (2002), Automatic model selection in a hybrid perceptron/radial network; Information Fusion, Special Issue on Multiple Experts, 3(4), p259266. 
5. 
Deng, X., Zhang, F., Rui, W., long, F., Wang, L., Feng, Z., Chen, D., Ding, W., (2013), PM_{2.5}induced oxidative stress triggers autophagy in human lung epithelial A549 cells, Toxicology in Vitro, 27(6), p17621770.

6. 
Dong, G.H., Zhang, P., Sun, B., Zhang, L., Chen, X., Ma, N., (2012), Long term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12 year population  based retrospective cohort study, Respiration, 84(5), p360368.

7. 
Eleuteri, A., Tagliaferri, R., Milano, L., (2005), A novel information geometric approach to variable selection in MLP networks, Neural Network, 18(10), p13091318.

8. 
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., (2015), Artificial neural network forecasting of PM_{2.5} pollution using air mass trajectory based geographic model and wavelet transformation, Atmospheric Environment, 107, p118128.

9. 
Goss, C.H., Newsom, S.A., Schildcrout, J.S., Sheppard, L., Kaufman, J.D., (2004), Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis, American Journal of Respiratory and Critical Care Medicine, 169(7), p816821.

10. 
Hambli, R., (2011), Multiscale prediction of crack density and crack length accumulation in trabecular bone based on neural networks and finite element simulation, International Journal for Numerical Methods in Biomedical Engineering, 27(4), p461475.

11. 
Hanna, S.R., Paine, R., Heinold, D., Kintigh, E., Baker, D., (2007), Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST 3 in the Houston ship channel area, Journal of Applied Meteorology and Climatology, 46, p13721382.

12. 
Harsham, D.K., Bennett, M., (2008), A sensitivity study of validation of three regulatory dispersion models, American Journal of Environmental Sciences, 4(1), p6376. 
13. 
Haykin, S., (1999), Neural networks: a comprehensive foundation, (2nd ed.), Upper Saddle River, New Jersey: Prentice Hal. 
14. 
Jones, R.M., Nicas, M., (2014), Benchmarking of a Markov multizone model of contaminant transport, Annals of Occupational Hygiene, 58(8), p10181031. 
15. 
Kohavi, R., John, G.H., (1997), Wrappers for feature subset selection, Artificial Intelligence, 97, p273324.

16. 
Kohohen, T., (1984), Selforganization and associative memory, New York, SpringerVerlag. 
17. 
Krause, P., Boyle, D.P., Bäse, F., (2005), Comparison of different efficiency criteria for hydrological model assessment, Advances in Geosciences, 5, p8997.

18. 
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Li, P., Xin, J.Y., Wang, Y.S., Wang, S.G., Li, G.X., Pan, X.C., Liu, Z.R., Wang, L.L., (2015), Reinstate regional transport of PM_{2.5} as a major cause of severe haze in Beijing, Proceeding of the National Academy of Sciences of the United States of America, 112, pE2739E2740. 
19. 
Kuncheva, L., (2004), Combining Pattern Classifiers: Methods and Algorithms, Wiley, New York, USA. 
20. 
Kurt, A., Gulbagci, B., Karaca, F., Alagha, O., (2008), An online air pollution forecasting system using neural networks, Environment International, 34, p592598.

21. 
Logofet, D.O., Lensnaya, E.V., (2000), The mathematics of Markov models: what Markov chains can really predict in forest successions, Ecological Modelling, 2(3), p285298. 
22. 
Nicas, M., (2014), Markov modeling of contaminant concentrations in indoor air, American Journal of Environmental Sciences, 61(4), p484491.

23. 
Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G., (2003), Extensive evaluation of neural network models for the prediction of NO_{2} and PM_{10} concentrations, compared with a deterministic modeling system and measurements in central Helsinki, Atmospheric Environment, 37, p45394550. 
24. 
Niska, H., Heikkinen, M., Kolehmainen, M., (2006), Genetic algorithms and sensitivity analysis applied to select inputs of a multilayer perceptron for the prediction of air pollutant timeseries, Chapter Intelligent data engineering and automated learningIDEAL2006 volume 4224 of the series lecture notes in computer science, p224231, springer publisher.

25. 
Niska, H., Rantamäki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J., (2005), Evaluation of an integrated modelling system containing a multilayer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations, Atmospheric Environment, 39(35), p65246536.

26. 
Orr, M.J.L., (1996), Introduction to radial basis function networks, University of Edinbergh, EH89LW. 
27. 
Owega, S., Khan, B.U.Z., Evans, G.J., Jervis, R.E., Fila, M., (2006), Identification of longrange aerosol transport patterns to Toronto via classification of back trajectories by cluster analysis and neural network techniques, Chemo Metrics and Intelligent Laboratory Systems, 83(1), p2633.

28. 
Romanof, N., (1982), A Markov chain model for the mean daily SO_{2} concentrations, Atmospheric Environment, 16(8), p18951897.

29. 
Rumelhart, D.E., McClelland, J.L., (1986), Parallel distribution processing: Exploration in the microstructure of cognition, Cambridge, MA, MIT Press. 
30. 
Shamshad, A., Bawadi, M.A., Wan Hussin, W.M.A., Majid, T.A., Sanusi, S.A.M., (2005), First and second order Markov chain models for synthetic generation of wind speed time series, Energy, 30, p693708.

31. 
Slaughter, J.C., Lumley, T., Sheppard, L., Koenig, J.Q., Shapiro, G.G., (2003), Effects of ambient air pollution on symptom severity and medication use in children with asthma, Annals of Allergy, Asthma and Immunology, 91(4), p346353.

32. 
Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N., (2006), PM_{10} forecasting for Thessaloniki, Greece, Environ. Modell. Softw, 21, p559565.

33. 
Song, X.M., (1996), Radial basis function networks for empirical modeling of chemical process, MSc thesis, University of Helsinki. 
34. 
Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S., (2013), Prediction of 24houraverage PM_{2.5} concentrations using a hidden Markov model with different emission distributions in Northern California, Science of the Total Environment, 443, p93103.

35. 
Taylor, H., Karlin, S., (1998), An Introduction to Stochastic Modeling, Academic Press, San Diego, California. 
36. 
Voukantsis, D., Karatzas, K., Kukkonen, J., Räsänen, T., Karppinen, A., Kolehmainen, M., (2011), Intercomparison of air quality data using principal component analysis, and forecasting of PM_{10} and PM_{2.5} concentrations using artificial neural networks, in Thessaloniki and Helsinki, Science of the Total Environment, 409, p12661276.

37. 
Wang, X., Liu, W., (2012), Research on Air Traffic Control Automatic System Software Reliability Based on Markov Chain, Physics Procedia, 24, p16011606.

38. 
Wilks, D.S., (2006), Statistical methods in the atmospheric sciences, 2nd ed., Academic Press, xvii, p627. 
39. 
Zickus, M., Greig, A.J., Niranjan, M., (2002), Comparison of four machine learning methods for predicting PM_{10} concentration in Helsinki, Finland, Water, Air and Soil Pollution, 2(5), p717729. 
40. 
Zurada, J.M., (1992), Introduction to Artificial Neural Systems, PWS, Singapore, p195196. 